Time Domain Inverse Problems in Nonlinear Systems Using Collocation & Radial Basis Functions
نویسندگان
چکیده
In this study, we consider ill-posed time-domain inverse problems for dynamical systems with various boundary conditions and unknown controllers. Dynamical systems characterized by a system of second-order nonlinear ordinary differential equations (ODEs) are recast into a system of nonlinear first order ODEs in mixed variables. Radial Basis Functions (RBFs) are assumed as trial functions for the mixed variables in the time domain. A simple collocation method is developed in the time-domain, with Legendre-Gauss-Lobatto nodes as RBF source points as well as collocation points. The duffing optimal control problem with various prescribed initial and final conditions, as well as the orbital transfer Lambert’s problem are solved by the proposed RBF collocation method as examples. It is shown that this method is very simple, efficient and very accurate in obtaining the solutions, with an arbitrary solution as the initial guess. Since methods such as the Shooting Method and the Pseudo-spectral Method can be unstable and require an accurate initial guess, the proposed method is advantageous and has promising applications in optimal control and celestial mechanics. The extension of the present study to other optimal control problems, and other orbital transfer problems with perturbations, will be pursued in our future studies.
منابع مشابه
A meshless technique for nonlinear Volterra-Fredholm integral equations via hybrid of radial basis functions
In this paper, an effective technique is proposed to determine thenumerical solution of nonlinear Volterra-Fredholm integralequations (VFIEs) which is based on interpolation by the hybrid ofradial basis functions (RBFs) including both inverse multiquadrics(IMQs), hyperbolic secant (Sechs) and strictly positive definitefunctions. Zeros of the shifted Legendre polynomial are used asthe collocatio...
متن کاملA numerical solution of mixed Volterra Fredholm integral equations of Urysohn type on non-rectangular regions using meshless methods
In this paper, we propose a new numerical method for solution of Urysohn two dimensional mixed Volterra-Fredholm integral equations of the second kind on a non-rectangular domain. The method approximates the solution by the discrete collocation method based on inverse multiquadric radial basis functions (RBFs) constructed on a set of disordered data. The method is a meshless method, because it ...
متن کاملSolving a nonlinear inverse system of Burgers equations
By applying finite difference formula to time discretization and the cubic B-splines for spatial variable, a numerical method for solving the inverse system of Burgers equations is presented. Also, the convergence analysis and stability for this problem are investigated and the order of convergence is obtained. By using two test problems, the accuracy of presented method is verified. Additional...
متن کاملDetermination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method
Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...
متن کاملSpace-time radial basis function collocation method for one-dimensional advection-diffusion problem
The parabolic partial differential equation arises in many application of technologies. In this paper, we propose an approximate method for solution of the heat and advection-diffusion equations using Laguerre-Gaussians radial basis functions (LG-RBFs). The results of numerical experiments are compared with the other radial basis functions and the results of other schemes to confirm the validit...
متن کامل